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Abstract
We examine the accuracy and the validity of the lowest order supersymmetric
WKB (SWKB) formula for cyclic shape invariant potentials (CSIPs). For
period-2 CSIPs, we show analytically that the SWKB formula can yield exact
eigenenergies for either all the even states or all the odd states. Such alternate
exactness of the SWKB formula is due to the fact that period-2 CSIPs can also
be considered as a kind of translational shape invariant potential. For CSIPs
with periods greater than 2, we note that the accuracy of the SWKB formula
also demonstrates similar alternating patterns. However, as a consequence of
the rapid oscillations in the potential at large distances, the SWKB quantization
formula fails to produce highly accurate results even in the high-energy limit.

PACS numbers: 03.65.Ge, 03.65.Sq, 03.65.Fd

1. Introduction

Supersymmetric quantum mechanics (SQM) (see, e.g., [1–6] and references therein), first
proposed by Witten to illustrate dynamical breaking of supersymmetry (SUSY) in quantum
field theory [1], has become an intriguing topic in its own right since the early 1980s. A host
of related issues, such as shape invariant potentials (SIPs) [7–9], isospectral Hamiltonians
[10–12], reflectionless potentials [13–15] and supersymmetric WKB (SWKB) approximation
[16–20] have been discovered and discussed in the context SQM. The basic idea of SQM is
to apply the factorization method [21–23] to express a given Hamiltonian Ĥ1 in an operator
form (in units of 2m = h̄ = 1),

Ĥ1 =
[
− d2

dx2
+ V1(x)

]
= A†A. (1.1)

The two operators A and A† are related to a superpotential W ,
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A = d

dx
+ W(x), (1.2)

A† = − d

dx
+ W(x), (1.3)

with W satisfying the equation

V1(x) = W 2(x) − W ′(x). (1.4)

Hereafter, we use a prime to denote differentiation with respect to x. The merit of SQM is to
relate the spectrum of Ĥ1 to that of another Hamiltonian Ĥ2 given by

Ĥ2 =
[
− d2

dx2
+ V2(x)

]
= AA†, (1.5)

where

V2(x) = W 2(x) + W ′(x). (1.6)

The eigenenergies of these two supersymmetric partner Hamiltonians, E
(i)
0 < E

(i)
1 < E

(i)
2 <

· · · (i = 1, 2), are almost identical in the sense that

E
(1)
n+1 = E(2)

n (1.7)

for unbroken SUSY where E
(1)
0 = 0 and Aψ

(1)
0 = 0, with ψ

(1)
0 being the ground-state

wavefunction of Ĥ1.

For SIPs satisfying the shape invariant relation

V2(x; a1) = V1(x; a2) + R(a1), (1.8)

where a1, a2 are free parameters characterizing the partner potentials V1, V2 and a2 = f (a1),
the entire spectrum of Ĥ1 is given by

E
(1)
0 = 0, E(1)

n =
n∑

k=1

R(ak) for n � 1, (1.9)

with ak ≡ f k−1(a1). SIPs play an very important role in SQM because both the energies and
wavefunctions of these system can be exactly obtained with algebraic methods. As a matter of
fact, many exactly solvable potentials frequently encountered in mathematical physics belong
to the class of SIPs (see, e.g., [4, 6, 24]). SIPs can be categorized according to the nature of
the function f (a1) (see, e.g., [6]). If f (a1) = a1 + α, where α is an arbitrary constant, the
family of SIPs is said to be related by translation, termed as translational SIPs (TSIPs). On the
other hand, if f (a1) = αa1, such SIPs are related by scaling and called scaling SIPs (SSIPs)
[8, 9].

Another kind of SIP discovered more recently is the cyclic shape invariant potential
(CSIP) [25–27]. For CSIPs, the parameters a1 and a2 in (1.8) are related by a cyclic function
f of period-p such that

ap+1 = f p(a1) = a1, (1.10)

with p being a positive integer. For period-2 CSIP, the analytic form of the superpotential W

can be found [25]. However, for p > 2,W cannot be expressed in a closed analytic form [25].
On the other hand, Comtet et al [16] have modified the usual WKB approximation to

obtain the SWKB approximation, where the quantization rule is given explicitly by∫ x2

x1

√
Ẽ

(1)
n − W 2(x) dx = nπ, (1.11)

2
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for n = 0, 1, 2, . . . . Here Ẽn is SWKB energy of the nth state, and x1, x2 are turning points
defined by Ẽ(1)

n = W 2(x1) = W 2(x2). The SWKB formula can be obtained from the traditional
WKB quantization rule [28],∫ x ′

2

x ′
1

√
Ẽ

(1)
n − V1(x) dx =

(
n +

1

2

)
π, (1.12)

where x ′
1, x

′
2 are the ‘turning points’ defined by V (x ′

1) = V (x ′
2) = Ẽn. The lowest order

SWKB formula (1.11) is then the leading term of an expansion of the WKB formula (1.12) in
power series of h̄ [16].

The SWKB approximation is generally deemed to outperform the conventional WKB
method for the following reasons [19, 29]. First, the SWKB method reduces to the conventional
WKB method in the large-n limit. Therefore, the SWKB method is expected to produce
accurate results for high-lying excited states as the conventional WKB method does. Second,
the SWKB quantization rule yields the correct energy E

(1)
0 = 0 for the ground state, in

sharp contrast to the poor performance of the conventional WKB method for low-lying states.
More interestingly, the SWKB approximation (1.11) was found to give the exact result for all
TSIPs [16, 17]. Such unexpected exactness of SWKB for TSIPs has attracted the interest of
researchers in the field of SQM and there have been a lot of attempts aiming at its explanation
[16–18, 30–34]. For example, Dutt et al [17] claimed that the exactness stems from the level
degeneracy between the partner systems. However, their argument failed to explain why (1.11)
does not yield exact results for SSIPs where level degeneracy still prevails [30]. More recently,
Milczarski and Giller [34] and Cheng et al [20] have attributed the exactness of the SWKB
formula for TSIPs to the analytic property and the generic behaviour of the superpotential W ,
respectively.

The main objective of the present paper is to study the performance of the SWKB
approximation for CSIPs. Specifically, we first study period-2 CSIPs, whose superpotential
W can be obtained analytically. We find that the SWKB quantization formula can yield highly
accurate numerical results for either the even or the odd states, but not both. To substantiate
our numerical results, we evaluate the SWKB integral analytically and succeed in showing
that the SWKB formula can yield exact eigenenergy for either the even states or the odd
states, depending on the parameters characterizing the superpotential. To the best of our
knowledge, such an alternating behaviour in the quality of SWKB approximation has not
yet been demonstrated in other systems. For CSIPs with periods greater than 2, we further
note that the accuracy of the SWKB formula also demonstrate similar alternating patterns.
However, the SWKB quantization formula fails to produce highly accurate results even in the
high-energy limit owing to the rapid oscillations in the potential at large distances.

The organization of our paper is as follows. Following a brief review on the construction
of CSIPs in section 2, we discuss the properties of period-2 CSIPs in section 3 and establish
explicitly the exactness of the SWKB approximation for the even (or odd) states of period-2
CSIPs in section 4. In section 5, we study the alternate exactness of the SWKB approximation
for period-2 CSIPs and show that such intriguing behaviour actually stems from the exactness
of the SWKB approximation for TSIPs. We then generalize our study to CSIPs with greater
periods in section 6 and end this paper with a brief discussion in section 7.

2. Construction of CSIPs

For CSIPs, the parameters a1 and a2 in the shape invariant condition (1.8) are related by
a cyclic function which reduces to an identity map after p iterations. By using the cyclic

3
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condition that W(x, ap+1) = W(x, a1) and R(ap+1) = R(a1), the shape invariant condition
for CSIPs system can be written as p-coupled ordinary differential equations [25],

W 2
k + W ′

k = W 2
k+1 − W ′

k+1 + ωk, (2.1)

where Wk = W(x, ak) and ωk = R(ak) > 0 for p � k � 1. The superpotential Wk

can be obtained from these p differential equations, either analytically or numerically [25].
Furthermore, equation (1.9) also gives the exact energies of Hamiltonian Ĥ1,

En = j�p +
n−j∑
k=1

ωk, (2.2)

where jp is the highest multiple of p smaller than n,�p = ∑p

k=1 ωk , and hereafter En = E(1)
n .

In the subsequent discussion, we will construct the superpotential Wk from (2.1) and evaluate
the SWKB integral (1.11) for CSIPs with p = 2, 3, 4, 5. The energies obtained from the
SWKB approximation are then compared with the exact energies given by (2.2).

3. Period-2 CSIPs

To gain more insight of the problem, we first study the simplest nontrivial CSIP, namely the
period-2 CSIP. For period-2 CSIPs, equation (2.1) contains only two ordinary differential
equations

W 2
1 + W ′

1 = W 2
2 − W ′

2 + ω1; (3.1)

W 2
2 + W ′

2 = W 2
1 − W ′

1 + ω2. (3.2)

These two equations can be solved analytically and the superpotentials are given by

W1(x) = (ω1 + ω2)x

4
+

(ω1 − ω2)

2(ω1 + ω2)x
, (3.3)

W2(x) = (ω1 + ω2)x

4
+

(ω2 − ω1)

2(ω1 + ω2)x
. (3.4)

It is worthy of note that the superpotentials W1 and W2 have the same functional form except
with the indices 1, 2 switched. Moreover, it is beneficial to consider (ω1 − ω2)/[2(ω1 + ω2)]
and (ω2 − ω1)/[2(ω1 + ω2)] as the parameters a1 and a2, respectively. It is then obvious that
the function f in (1.10) is simply given by f (a1) = −a1, which is of course a period-2 cyclic
function.

From W1 and W2 obtained above, the corresponding potentials V1 and V2 can be readily
found,

V1(x) = (ω1 + ω2)
2x2

16
− ω2

2
+

(3ω1 + ω2)(ω1 − ω2)

4(ω1 + ω2)2x2
, (3.5)

V2(x) = (ω1 + ω2)
2x2

16
+

ω1

2
+

(ω1 + 3ω2)(−ω1 + ω2)

4(ω1 + ω2)2x2
. (3.6)

For the purpose of illustration, the superpotential W1 and potential V1 are shown in figure 1
for the cases with (i) ω1 = 0.7, ω2 = 0.3 (dotted line); and (ii) ω1 = 0.3, ω2 = 0.7 (solid
line).

From the explicit expression of these superpotentials and potentials, one can easily see that
period-2 CSIPs are in fact similar to three-dimensional harmonic oscillators with fractional

4
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Figure 1. (a) The superpotential W1 and (b) the potential V1 are shown as functions of x for
period-2 CSIPs with (i) ω1 = 0.7, ω2 = 0.3 (dotted line); and (ii) ω1 = 0.3, ω2 = 0.7 (solid line).
These two cases are a pair of supersymmetric partner potentials.

angular momentum l = (ω1 − ω2)/[2(ω1 + ω2)]. It is well known that three-dimensional
harmonic oscillators are a kind of TSIP (see, e.g., [6]). Therefore, period-2 CSIPs can also
be treated as TSIPs. We will see later in this paper that it is this salient feature of period-
2 CSIPs leading to the alternate exactness of the SWKB approximation. The dual role of
period-2 CSIPs can be understood as follows. For a period-2 CSIP with a potential V1(x)

carrying a fractional angular momentum l and hence a centrifugal barrier l(l +1)/x2, the shape
invariant function is given by f (l) = −l. Then, the angular momentum of its partner potential
V2(x) is −l and the centrifugal barrier in V2(x) is −l(−l + 1)/x2, or equivalently l(l − 1)/x2.

Hence, V1(x) and V2(x) are characterized by angular momenta l and l − 1, which are of the
translational invariant type. As a result, period-2 CSIPs are also a special kind of TSIP.

Meanwhile, the exact energy spectrum is given by (1.9)

En =
{

n(ω1 + ω2)/2 if n is even;

(n − 1)(ω1 + ω2)/2 + ω1 if n is odd.
(3.7)

Besides, the corresponding eigenfunction ψn(x) = ψ(1)
n (x) are given by

ψ2m+j (x) = xj−�/2 exp(−ωx2/4)L(−�/2+j−1/2)
n (ωx2/2), (3.8)

where m = 0, 1, 2, 3, . . . , j = 0, 1, L(α)
n (z) is the standard generalized Laguerre polynomial

[35], and

�(ω1, ω2, j) = (−1)j
ω1 − ω2

ω1 + ω2
, (3.9)

ω = ω1 + ω2

2
. (3.10)

Before delving into the application of the SWKB approximation to period-2 CSIPs, it
is worthwhile to note that period-2 (and other even period) CSIPs are singular at the origin
x = 0, where the potential is proportional to 1/x2. It is well known that for an inverse-square
singular potential Vs(x) = λ/x2, the behaviour of the wavefunction at the origin depends
crucially on the strength λ (see [4] and references therein). If λ > 3/4, the potential is said to
have a ‘strong’ singularity there. The two intervals x > 0 and x < 0 become disjoint and the
particle cannot tunnel through the point x = 0. On the other hand, if −1/4 < λ < 3/4, the
potential then has a singularity of ‘intermediate’ strength. Such an ‘intermediate’ singularity
is not strong enough to make the wavefunction there vanish and the particle can tunnel through
the origin. Hence, the two intervals x > 0 and x < 0 are connected and one has to solve the

5
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Schrödinger equation in the full range −∞ < x < ∞ [4, 26]. It is easy to see from (3.5) that
period-2 CSIPs have an intermediate singularity at the origin. As a consequence, one has to
consider the whole range −∞ < x < ∞ when solving the Schrödinger equation for period-2
(and other even-period) CSIPs. Similarly, the SWKB approximation should be applied to the
whole range −∞ < x < ∞.

4. SWKB approximation for period-2 CSIPs

We are now going to compare this exact spectrum in (3.7) with that obtained from the SWKB
formula for period-2 CSIPs. Without loss of generality, in the following we evaluate the
SWKB integral for a superpotential given by

W = W1 = Ax +
B

x
, (4.1)

where

A = ω1 + ω2

4
(4.2)

is always positive, and

B = ω1 − ω2

2(ω1 + ω2)
(4.3)

can be positive (negative) if ω1 − ω2 > 0 (ω1 − ω2 < 0). It is worthy of remark that if B > 0,

W 2 attains a non-vanishing minimum of (ω1 − ω2)/2 at x = [2(ω1 − ω2)]1/2/(ω1 + ω2).

However, if B < 0, the minimum of W 2 is zero.
Direct substitution of (4.1) into the SWKB formula (1.11) leads to the quantization rule

In =
(∫ xb

xa

+
∫ xd

xc

)
dx

√
Ẽn −

(
A2x2 + 2AB +

B2

x2

)
= nπ, (4.4)

where Ẽn is the nth eigenenergy obtained from the SWKB formula and

xa,b,c,d = ±
√

Ẽn ±
√

Ẽn − 4AB

2A
(4.5)

are the four turning points defined by W 2 = Ẽn with xa < xb < xc < xd. It is worthy of
note that owing to the singular nature of W 2 at x = 0, the integration in (4.4) contains two
disconnected parts.

We make use of the SWKB quantization rule (1.11) to determine Ẽn and the numerical
results for four typical sets of ω1 and ω2 are shown in table 1. It is surprising to see that for
all these cases the SWKB energy Ẽn is, within acceptable numerical errors, identical to the
exact energy En if either (i) ω1 > ω2 and n = 2m + 1; or (ii) ω1 < ω2 and n = 2m, where
m = 0, 1, 2, 3, . . . . This intriguing discovery strongly suggests that the SWKB quantization
rule (1.11) is exact in an alternate manner for period-2 CSIPs. In addition, contrary to the
conventional belief that the SWKB approximation can lead to exact ground-state energy,
which is zero, the SWKB approximation yields nonzero ground-state energy if ω1 > ω2. In
the following discussion, we will establish such exactness of the SWKB quantization rule
analytically.

The integral in (4.4) can be evaluated analytically with standard methods in residue
calculus by considering the integration variable x as a complex variable z. The integrand in
(4.4),

J (z) ≡
√

Ẽn −
(

A2z2 + 2AB +
B2

z2

)
, (4.6)

6
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Table 1. The table shows the numerical values of Ẽn obtained from the SWKB quantization rule
(1.11) for period-2 CSIPs with four typical sets of ω1 and ω2. Ẽn is, within acceptable numerical
errors, identical to the exact energy En if either (i) ω1 > ω2 and n = 2m + 1; or (ii) ω1 < ω2 and
n = 2m, where m = 0, 1, 2, 3, . . . .

ω1 ω2 n En Ẽn En − Ẽn Ẽn − Ẽn−1

0.7 0.3 0 0.000 00 0.200 00 −0.200 00 NA
1 0.700 00 0.700 00 0.000 00 0.500 00
2 1.000 00 1.200 00 −0.200 00 0.500 00
3 1.700 00 1.700 00 0.000 00 0.500 00
4 2.000 00 2.199 99 −0.199 99 0.499 98
5 2.700 00 2.700 00 0.000 00 0.500 01

10 5.000 00 5.19999 −0.19999 0.49998
15 7.700 00 7.700 00 0.000 00 0.500 02
20 10.000 00 10.200 04 −0.200 04 0.500 02

0.3 0.7 0 0.000 00 0.000 00 0.000 00 NA
1 0.300 00 0.500 00 −0.200 00 0.500 00
2 1.000 00 1.000 00 0.000 00 0.500 00
3 1.300 00 1.499 99 −0.199 99 0.500 00
4 2.000 00 2.000 00 0.000 00 0.500 00
5 2.300 00 2.500 00 −0.200 00 0.500 01

10 5.000 00 4.999 99 0.000 01 0.500 01
15 7.300 00 7.500 02 −0.199 98 0.499 99
20 10.000 00 9.999 98 0.000 02 0.499 98

0.6 0.4 0 0.000 00 0.100 00 −0.100 00 NA
1 0.600 00 0.600 00 0.000 00 0.500 00
2 1.000 00 1.100 00 −0.100 00 0.500 00
3 1.600 00 1.600 00 0.000 00 0.500 00
4 2.000 00 2.099 99 −0.099 99 0.499 99
5 2.600 00 2.600 00 0.000 00 0.500 01

10 5.000 00 5.099 99 −0.099 99 0.499 98
15 7.600 00 7.599 99 0.000 01 0.500 00
20 10.000 00 10.099 98 −0.099 98 0.499 98

0.4 0.6 0 0.000 00 0.000 00 0.000 00 NA
1 0.400 00 0.500 00 −0.100 00 0.500 00
2 1.000 00 1.000 00 0.000 00 0.500 00
3 1.400 00 1.500 01 −0.100 00 0.500 01
4 2.000 00 1.999 99 0.000 01 0.499 98
5 2.400 00 2.499 99 −0.099 99 0.500 00

10 5.000 00 5.000 01 −0.000 01 0.500 01
15 7.400 00 7.500 00 −0.100 00 0.499 96
20 10.000 00 9.999 99 0.000 01 0.500 00

has two cuts along the real z-axis, going respectively from xa to xb and from xc to xd , and a
singular point at z = 0 as well. It is then readily shown that

In = −1

2

∮
C1+C2

J (z) dz, (4.7)

where C1 (C2) is the contour enclosing the cut from xa to xb (xc to xd ) in the counterclockwise
direction (see figure 2).

On the other hand, as there is neither pole nor cut in the complex plane outside C0, C1, C2,
where C0 is the contour enclosing the singular point at z = 0, the corresponding integral along

7
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Im z

Re z

C2C0

C 8

xd

C1

xcxbxa

Figure 2. The figure shows the integration contours in the complex z-plane, which are used to
calculate the SWKB integral and hence Ẽn for CSIPs with p = 2.

an infinitely large contour C∞ enclosing the point z = ∞ is given by∮
C∞

J (z) dz =
(∮

C0

+
∮

C1

+
∮

C2

)
J (z) dz. (4.8)

Furthermore, from standard methods in residue calculus, the integrals along C0 and C∞ can
be obtained, ∮

C0

J (z) dz = −2π |B|, (4.9)

∮
C∞

J (z) dz = −π(Ẽn − 2AB)

A
. (4.10)

Following directly from the SWKB quantization condition (4.4), equations (4.7), (4.8), (4.9)
and (4.10), the energy of the nth eigenstate under the SWKB approximation is given by

Ẽn = 2nA + 2A|B| + 2AB. (4.11)

It is worthy of note that the SWKB eigenenergy Ẽn is non-analytic in B due to the presence
of |B| in the RHS of (4.11). In the following discussion, we will see that whether Ẽn agrees
with the exact value of En in (3.7) in fact depends on the sign of B.

To study the question of the exactness of the SWKB formula, we express the parameters
A,B in terms of ω1 and ω2 and substitute them back into (4.4). We firstly consider the case
with ω1 > ω2. Since B is positive in this case, the energy spectrum generated by the SWKB
formula is

Ẽn = 2nA + 4AB = (n − 1)(ω1 + ω2)

2
+ ω1. (4.12)

When comparing Ẽn with the exact energy given by (3.7), it is interesting to find that SWKB
quantization successfully reproduces exact energies for all odd states with n = 1, 3, 5, . . . ,

but not for the even states. Most interestingly, as mentioned above, in this case SWKB is
inexact even for the ground state. Instead, it is easy to see that Ẽ0 = (ω1 − ω2)/2 from the
SWKB formula (4.12). Alternately, the result can be understood because the minimum value
of W 2 is (ω1 − ω2)/2, which is equal to Ẽ0 by (1.11) with n = 0.

8
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Second, we consider the case with ω1 < ω2, implying that B is negative, and thus the
spectrum generated by SWKB formula is

Ẽn = 2nA = n

2
(ω1 + ω2). (4.13)

In this case, the SWKB approximation gives exact values of energies for all even states with
n = 0, 2, 4, . . . , but not for the odd states.

From the above calculations, it is surprising to find that the SWKB formula for period-2
CSIPs is neither completely exact (as for TSIPs) nor completely inexact (as for SSIPs). Instead,
for period-2 CSIPs the SWKB formula is exact for either all the even states or all the odd
states, depending merely on the value of ω1 − ω2.

5. Period-2 CSIPs, TSIPs and broken SUSY

Here we analyse in detail the alternate exactness of the SWKB approximation for the period-2
CSIP. First, as the SWKB approximation is exact for all known TSIPs, and period-2 CSIPs can
also be considered as a kind of TSIP, it is plausible that the alternate exactness discovered here
for period-2 CSIPs follows directly from the exactness of the SWKB approximation for TSIPs.
In addition, we also note that such intriguing phenomenon is closely related to broken SUSY
(BSUSY), where the SWKB formula (1.11) has to be modified [20, 36–39]. In SQM, BSUSY
refers to supersymmetric partner potentials with both E

(1)
0 �= 0 and E

(2)
0 �= 0. As a result,

each eigenenergy of Ĥ1 is identical to the corresponding one of Ĥ2. In systems where BSUSY
prevails, the SWKB quantization formula needs to be modified as follows [20, 38, 39]:∫ x2

x1

√
E

(1)
n − W 2(x) dx =

(
m +

1

2

)
π, (5.1)

for m = 0, 1, 2, . . . . As mentioned above, x1, x2 are turning points defined by E(1)
n =

W 2(x1) = W 2(x2). The extra 1/2 in the RHS of (5.1) arises from the difference in the
asymptotic behaviour of the superpotential W(x) for systems with unbroken and broken
SUSY [39]. Generally speaking, the signs of W(x) at the two spatial boundaries are opposite
(the same) for systems with unbroken (broken) SUSY. It is such difference that gives rise to
the two different SWKB quantization formulae, equations (1.11) and (5.1) [39].

To see the relation between BSUSY and the alternate exactness of the SWKB formula for
period-2 CSIPs, we first study specifically the case with ω1 > ω2. By virtue of the reflection
symmetry of the potential about the point x = 0, we can consider the Schrödinger wave
equation in the half-line where 0 < x < ∞. Hence, the two spatial boundary points are
x = 0 and x = ∞. Following directly from (3.3), the limits of the superpotential W1 at these
boundaries are both positive (see figure 1) and the system is thus characterized by BSUSY. In
particular, the ground state ψ

(1)
0 of V1 is not a physical state because the momentum operator

−id/dx is no longer Hermitian for such a state, which can be shown in a straightforward way
from (3.8) [36]. Besides, the energy of ψ

(1)
0 is zero despite the fact that the potential V1 is

greater than zero everywhere. The non-Hermitian property of the momentum operator is of
course the culprit of this unphysical result [36]. Once ψ

(1)
0 and E

(1)
0 are excluded from the

physical solutions of the Schrödinger wave equation for V1, the spectra of V1 and V2 become
completely degenerate, which is a standard characteristic of BSUSY.

The SWKB quantization rule for systems with BSUSY is given by (5.1), instead of (1.11).
Using (5.1) and by reflection symmetry of V1, we find that(∫ xb

xa

+
∫ xd

xc

) √
E

(1)
n − W 2(x) dx = (2m + 1) π, (5.2)

9
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where m = 0, 1, 2, . . . . As mentioned above, period-2 CSIPs are also a kind of TSIPs. Since
the exactness of the SWKB quantization rule for TSIPs with BSUSY is well established
[20, 38, 39], the alternate exactness of the SWKB quantization rule for period-2 CSIPs follows
directly from (5.2). By comparing (1.11) and (5.2), one can readily see that the former is exact
for all the odd states with n = 1, 3, 5, . . . , but not for the even states.

Second, we consider the other case with ω1 < ω2. Proceeding along similar arguments,
we find that SUSY of the system is unbroken as the limits of the superpotential W1 at the two
spatial boundaries are of opposite signs (see figure 1). Therefore, the standard SWKB formula
for unbroken supersymmetry should be applied, yielding the result(∫ xb

xa

+
∫ xd

xc

) √
E

(1)
n − W 2(x) dx = 2mπ, (5.3)

where m = 0, 1, 2, . . . . It is then obvious that (1.11) is exact for all the even states with
n = 0, 2, 4, . . . , but not for the odd states.

6. SWKB approximation for other CSIPs

In this section, we further studies to other CSIPs. However, for CSIPs with period p � 3, the
superpotential W(x) cannot be obtained analytically. We consider, as an example, period-3
CSIPs, whose superpotentials are governed by three coupled ordinary differential equations
[25]

W ′
1 = W 2

2 − W 2
3 + 1

2 (ω1 − ω2 + ω3),

W ′
2 = W 2

3 − W 2
1 + 1

2 (ω2 − ω3 + ω1), (6.1)

W ′
3 = W 2

1 − W 2
2 + 1

2 (ω3 − ω1 + ω2).

To our knowledge, there is no closed form solution to (6.1). In the region where |x| � 1, the
superpotential W1 can be expanded as follows [25]:

W1(x) = x

2
(ω1 − ω2 + ω3) +

x3

3
ω2(ω1 − ω3) + · · · . (6.2)

Unlike the case of period-2 CSIPs, W1 is finite and well behaved at small x. In general,
superpotentials of CSIPs with odd periods are all well-behaved functions at small x and they
vanish at the point x = 0 [25]. For intermediate and large x, we have to solve these differential
equations numerically with the standard Runge–Kutta method. In figure 3, we show the
numerical results of both W1(x) and V1(x) for the parameters ω1 = 0.3, ω2 = 0.4, ω3 = 0.7.

After numerically evaluating the superpotentials, we obtain the SWKB energy spectrum
by numerical integration and root-search schemes. The numerical result are then compared
with the exact spectrum given by the shape invariant condition (1.9),

En =
⎧⎨
⎩

n(ω1 + ω2 + ω3)/3 for n = 3m,
(n − 1)(ω1 + ω2 + ω3)/3 + ω1 for n = 3m + 1,
(n − 2)(ω1 + ω2 + ω3)/3 + ω1 + ω2 for n = 3m + 2,

(6.3)

where m = 0, 1, 2, . . . .

The accuracy of the SWKB formula for period-3 CSIPs can be observed from the data
presented as table 2. From the table, it is then obvious that for period-3 CSIPs the SWKB
formula is neither exact nor alternately exact as in the case of period-2 CSIPs. In particular, in
stark contrast to conventional belief, the accuracies of the SWKB results do not improve much
with increasing n. On the other hand, the difference between the exact and the SWKB spectra,

10
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(a) (b)

Figure 3. (a) The superpotential W1 and (b) the potential V1 of a period-3 CSIP with parameters
ω1 = 0.3, ω2 = 0.4, ω3 = 0.7 are shown as functions of x.

En − Ẽn, also demonstrates a quasi-periodic variation for every 3 levels, which becomes
more regular for large n. More interestingly, we find that such a quasi-periodic variation in
En − Ẽn persists in other CSIPs. As shown in tables 3 and 4, where En and Ẽn of period-4 and
period-5 CSIPs are tabulated, En − Ẽn manifests similar quasi-periodic variation for every
4 and 5 levels, respectively. In general, for a period-p CSIP, the difference En − Ẽn varies
quasi-periodically for every p levels. Besides, the accuracies of the energy levels obtained
from the SWKB approximation also do not improve with increasing n.

Here we provide a physical argument for such a intriguing quasi-periodical behaviour
for a general period-p CSIP (p > 2). Sukhatme et al [25] have shown that at large x the
superpotential W(x) assume the form

W(x) = �px

2p
+

∑
j

bj sin(qjx
2 + φj ) + O

(
1

x

)
, (6.4)

where j = 1, 2, 3, . . . and is bounded by p/2, qj = (�p/2p) tan(jπ/p), and bj and φj are
constants to be determined from (2.1). As a result, W(x) oscillates rapidly at large x. This
point is clearly demonstrated in figures 3–5, where the superpotentials and the potentials of
period-3, 5 and 4 CSIPs are plotted against x, respectively.

In order to find Ẽn, one has to evaluate the integral in (1.11). In particular, if one is
interested in the large-n regime, the integral in (1.11) is dominated by the large-x limit of
W(x). Taking into consideration the rapidly oscillating asymptotic behaviour of W(x) there,
we can replace W(x) by its spatial average W(x), and from (6.4), W(x) is equal to �px/(2p).

Making use of this approximation and the SWKB formula, we get

∫ √
Ẽn −

(
�px

2p

)2

dx ≈ nπ, (6.5)

from which the SWKB approximate energies for high excited states are

Ẽn ≈ n�p

p
. (6.6)

Hence the SWKB formula approximately gives an evenly spaced spectrum for large n. In
fact, this point can be easily observed and verified from tables 2–4. Comparing Ẽn shown in

11
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Table 2. A table showing the exact energy En and the SWKB energy Ẽn for period-3 CSIPs with
different values of ω1, ω2 and ω3.

ω1 ω2 ω3 n En Ẽn En − Ẽn Ẽn − Ẽn−1

0.3 0.4 0.7 0 0.000 00 0.000 00 0.000 00 NA
1 0.300 00 0.300 07 −0.000 07 0.300 07
2 0.700 00 0.797 67 −0.097 67 0.497 61
3 1.400 00 1.277 88 0.122 12 0.480 20
4 1.700 00 1.731 35 −0.031 35 0.453 47
5 2.100 00 2.206 96 −0.106 96 0.475 61
6 2.800 00 2.658 77 0.141 23 0.451 82
7 3.100 00 3.141 80 −0.041 80 0.483 02
8 3.500 00 3.592 91 −0.092 91 0.451 11
9 4.200 00 4.068 15 0.131 85 0.475 25

10 4.500 00 4.532 00 −0.032 00 0.463 84
11 4.900 00 4.998 51 −0.098 51 0.466 51
12 5.600 00 5.468 46 0.131 54 0.469 95
13 5.900 00 5.932 61 −0.032 61 0.464 15
14 6.300 00 6.401 18 −0.101 18 0.468 57
15 7.000 00 6.868 42 0.131 58 0.467 24
16 7.300 00 7.334 95 −0.034 95 0.466 53
17 7.700 00 7.798 49 −0.098 49 0.463 54
18 8.400 00 8.270 19 0.129 81 0.471 70
19 8.700 00 8.730 74 −0.030 74 0.460 55
20 9.100 00 9.203 71 −0.103 71 0.472 98

0.3 0.7 0.4 0 0.000 00 0.000 00 0.000 00 NA
1 0.300 00 0.409 88 −0.109 88 0.409 88
2 1.000 00 0.921 63 0.078 37 0.511 75
3 1.400 00 1.349 63 0.050 37 0.428 00
4 1.700 00 1.836 09 −0.136 09 0.486 45
5 2.400 00 2.301 90 0.098 10 0.465 81
6 2.800 00 2.761 78 0.038 22 0.459 88
7 3.100 00 3.239 73 −0.139 73 0.477 95
8 3.800 00 3.697 32 0.102 68 0.457 59
9 4.200 00 4.169 80 0.030 20 0.472 48

10 4.500 00 4.630 75 −0.13075 0.46095
11 5.200 00 5.103 53 0.096 47 0.472 79
12 5.600 00 5.561 55 0.038 45 0.458 01
13 5.900 00 6.038 85 −0.138 85 0.477 30
14 6.600 00 6.495 49 0.104 51 0.456 64
15 7.000 00 6.968 18 0.031 82 0.472 69
16 7.300 00 7.431 55 −0.131 55 0.463 37
17 8.000 00 7.900 08 0.099 92 0.468 53
18 8.400 00 8.365 32 0.034 68 0.465 24
19 8.700 00 8.833 95 −0.133 95 0.468 63
20 9.400 00 9.297 13 0.102 87 0.463 18

0.1 0.8 0.9 0 0.000 00 0.000 00 0.000 00 NA
1 0.100 00 0.419 18 −0.319 18 0.419 18
2 0.900 00 0.915 78 −0.01578 0.49660
3 1.800 00 1.525 96 0.27404 0.61018
4 1.900 00 2.153 92 −0.25392 0.62797
5 2.700 00 2.759 28 −0.059 28 0.605 36
6 3.600 00 3.323 11 0.276 89 0.563 84
7 3.700 00 3.933 68 −0.233 68 0.610 56

12



J. Phys. A: Math. Theor. 41 (2008) 075307 H K Lau and P T Leung

Table 2. (Continued).

ω1 ω2 ω3 n En Ẽn En − Ẽn Ẽn − Ẽn−1

8 4.500 00 4.546 14 −0.046 14 0.612 47
9 5.400 00 5.129 58 0.270 42 0.583 43

10 5.500 00 5.733 75 −0.233 75 0.604 17
11 6.300 00 6.340 40 −0.040 40 0.606 65
12 7.200 00 6.929 82 0.270 18 0.589 42
13 7.300 00 7.537 12 −0.237 12 0.607 30
14 8.100 00 8.136 61 −0.036 61 0.599 48
15 9.000 00 8.731 00 0.269 00 0.594 39
16 9.100 00 9.339 03 −0.239 03 0.608 03
17 9.900 00 9.930 49 −0.030 49 0.591 46
18 10.800 00 10.533 67 0.266 33 0.603 18
19 10.900 00 11.137 03 −0.237 03 0.603 35
20 11.700 00 11.732 34 −0.032 34 0.595 31

(a) (b)

Figure 4. (a) The superpotential W1 and (b) the potential V1 are shown as functions of x for two
period-4 CSIPs, respectively, with the parameters (ω1, ω2, ω3, ω4) given by (0.3, 0.4, 0.6, 0.9)

for the solid line, and (0.4, 0.6, 0.9, 0.3) for the dotted line. These two cases are a pair of
supersymmetric partner potentials.

(a) (b)

Figure 5. (a) The superpotential W1 and (b) the potential V1 of a period-5 CSIP with parameters
ω1 = 0.4, ω2 = 0.5, ω3 = 0.55, ω4 = 1.0, and ω5 = 1.1 are shown as functions of x.
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Table 3. A table showing the exact energy En and the SWKB energy Ẽn for period-4 CSIPs with
different values of ω1, ω2, ω3 and ω4.

ω1 ω2 ω3 ω4 n En Ẽn En − Ẽn Ẽn − Ẽn−1

0.3 0.4 0.6 0.9 0 0.0000 0.0000 0.0000 NA
1 0.3000 0.2999 0.0001 0.2999
2 0.7000 0.8382 −0.1382 0.5382
3 1.3000 1.4690 −0.1690 0.6309
4 2.2000 2.0324 0.1676 0.5634
5 2.5000 2.5401 −0.0401 0.5077
6 2.9000 3.0771 −0.1771 0.5370
7 3.5000 3.6561 −0.1561 0.5790
8 4.4000 4.2279 0.1721 0.5718
9 4.7000 4.7261 −0.0261 0.4982

10 5.1000 5.2945 −0.1945 0.5683
11 5.7000 5.8629 −0.1629 0.5685
12 6.6000 6.4024 0.1976 0.5395
13 6.9000 6.9431 −0.0431 0.5407
14 7.3000 7.4992 −0.1992 0.5561
15 7.9000 8.0574 −0.1574 0.5582
16 8.8000 8.6000 0.2000 0.5426

0.4 0.6 0.9 0.3 0 0.0000 0.0167 −0.0167 NA
1 0.4000 0.4694 −0.0694 0.4527
2 1.0000 1.1840 −0.1840 0.7147
3 1.9000 1.7450 0.1550 0.5610
4 2.2000 2.2281 −0.0281 0.4831
5 2.6000 2.7778 −0.1778 0.5497
6 3.2000 3.3501 −0.1501 0.5724
7 4.1000 3.9405 0.1595 0.5903
8 4.4000 4.4278 −0.0278 0.4873
9 4.8000 4.9864 −0.1864 0.5586

10 5.4000 5.5677 −0.1677 0.5814
11 6.3000 6.1070 0.1930 0.5393
12 6.6000 6.6364 −0.0364 0.5294
13 7.0000 7.2009 −0.2009 0.5645
14 7.6000 7.7564 −0.1564 0.5555
15 8.5000 8.2974 0.2026 0.5410
16 8.8000 8.8416 −0.0416 0.5442

(6.6) with En given exactly by (6.3), one can easily understand the quasi-periodic behaviour
displayed by En − Ẽn for every p levels in the large-n regime.

Meanwhile, the observation that the accuracies of the energy levels obtained from the
SWKB approximation do not improve with increasing n can also be explained as follows.
Similar to the traditional WKB approximation, the SWKB approximation is constructed
for smooth potentials. However, for potentials of CSIPs with period greater than 2, rapid
oscillations with increasing shorter periods play a dominant role at large x. As a consequence,
the potentials cannot be considered as smooth even in the high-energy limit. Thus, the SWKB
approximation is no longer a good approximation for such situations.

It is also worthy of remark that BSUSY also occurs for period-4 (or other even-period)
CSIPs. In figure 4, the parameters (ω1, ω2, ω3, ω4) are given by (0.3, 0.4, 0.6, 0.9) for
the solid line, and (0.4, 0.6, 0.9, 0.3) for the dotted line. These two cases are a pair of
supersymmetric partner potentials. While the values of the superpotential evaluated at the two
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Table 4. A table showing the exact energy En and the SWKB energy Ẽn for period-5 CSIPs with
different values of ω1, ω2, ω3, ω4 and ω5.

ω1 ω2 ω3 ω4 ω5 n En Ẽn En − Ẽn Ẽn − Ẽn−1

0.4 0.5 0.55 1.0 1.1 0 0.0000 0.0000 0.0000 NA
1 0.4000 0.3990 0.0010 0.3990
2 0.9000 0.9105 −0.0105 0.5115
3 1.4500 1.7194 −0.2694 0.8089
4 2.4500 2.4622 −0.0122 0.7427
5 3.5500 3.1779 0.3721 0.7157
6 3.9500 3.9133 0.0367 0.7354
7 4.4500 4.6127 −0.1627 0.6994
8 5.0000 5.2725 −0.2725 0.6598
9 6.0000 6.0079 −0.0079 0.7354

10 7.1000 6.7174 0.3826 0.7095
11 7.5000 7.4247 0.0753 0.7073
12 8.0000 8.1487 −0.1487 0.7240
13 8.5500 8.8606 −0.3106 0.7119
14 9.5500 9.5538 −0.0038 0.6932
15 10.6500 10.2508 0.3992 0.6970
16 11.0500 10.9726 0.0774 0.7218
17 11.5500 11.6949 −0.1449 0.7223
18 12.1000 12.4085 −0.3085 0.7136
19 13.1000 13.1055 −0.0055 0.6970
20 14.2000 13.8195 0.3805 0.7141

0.4 0.5 1.0 0.6 0.7 0 0.0000 0.0000 0.0000 NA
1 0.4000 0.4187 −0.0187 0.4187
2 0.9000 1.0432 −0.1432 0.6245
3 1.9000 1.8218 0.0782 0.7786
4 2.5000 2.4306 0.0694 0.6088
5 3.2000 3.0865 0.1135 0.6560
6 3.6000 3.6948 −0.0948 0.6082
7 4.1000 4.3254 −0.2254 0.6306
8 5.1000 4.9608 0.1392 0.6354
9 5.7000 5.6269 0.0731 0.6662

10 6.4000 6.2731 0.1269 0.6462
11 6.8000 6.9099 −0.1099 0.6367
12 7.3000 7.5196 −0.2196 0.6097
13 8.3000 8.1681 0.1319 0.6485
14 8.9000 8.8312 0.0688 0.6631
15 9.6000 9.4659 0.1341 0.6348
16 10.0000 10.0902 −0.0902 0.6242
17 10.5000 10.7295 −0.2295 0.6393
18 11.5000 11.3838 0.1162 0.6543
19 12.1000 12.0201 0.0799 0.6363
20 12.8000 12.6574 0.1426 0.6373

spatial boundaries x = 0 and x = ∞ are of different signs for the former, which is a unbroken
SUSY case; they are both positive for the latter, signifying BSUSY. Correspondingly, as shown
in table 3, Ẽ0 is exact (inexact) for the former (latter). Besides, both the superpotential and
the potential of even-period CSIPs are singular at the origin. Numerical construction of such
potentials is a bit tricky and, for the purpose of reference, we have included an appendix to
the present paper to summarize relevant procedures.
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7. Discussion and conclusion

In this paper, we have discussed the accuracy of the SWKB approximation for various CSIPs.
The most interesting situation is the case of period-2 CSIPs, where the SWKB approximation
can lead to exact eigenenergies of all even or odd states. Such alternate exactness of the
SWKB approximation is attributable to two special features of period-2 CSIPs. (i) Period-2
CSIPs are equivalent to three-dimensional harmonic potentials, which are TSIPs; and (ii) the
half-line problem associated with period-2 CSIPs, which are symmetric (or antisymmetric)
about the origin, can give rise to either unbroken or broken SUSY. As the SWKB quantization
rules (1.11) and (5.1), valid respectively for unbroken or broken SUSY, are known to yield
exact results for TSIPs [20], the alternate exactness of the SWKB approximation for period-2
CSIPs can be explained.

The SWKB quantization rule can no longer lead to exact results for CSIPs with period p
greater than 2. Actually, the difference between the exact and the SWKB results, in general,
does not decrease significantly in the high-energy limit. Instead, it reveals a quasi-periodic
variation of period p. Such findings are shown to be the direct consequence of the asymptotic
behaviour of the potential at large x, which resembles that of a harmonic potential plus rapid
oscillations with increasingly short periods (see figures 3–5).

Lastly, we also note that BSUSY can occur in even-period CSIPs. In such cases, the
SWKB quantization rule (1.11) fails to yield exact ground-state energy, which is zero by
convention in SQM. However, similar to the case of period-2 CSIPs, such ground states can
be deleted due to the singular nature of associated wavefunctions at the origin.
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Appendix

A note is made here to discuss the construction of the superpotential of period-4 CSIPs
and other even-periods CSIPs as well. As remarked above, superpotentials of CSIP with
period p > 3 cannot be obtained analytically. For odd-period CSIPs, systems of ordinary
differential equations like equation (6.1) can easily be written and hence the superpotentials
can be obtained by numerical method with the nodal boundary condition W = 0 at x = 0
[25]. However, the situation becomes more difficult for CSIPs with an even period. In the
following, we consider a period-4 CSIP as an example to illustrate the problems encountered
in solving for the superpotentials numerically.

The shape invariant condition for period-4 CSIPs yields a set of differential equations for
the superpotentails [25],

W 2
1 + W ′

1 = W 2
2 − W ′

2 + ω1,

W 2
2 + W ′

2 = W 2
3 − W ′

3 + ω2,

W 2
3 + W ′

3 = W 2
4 − W ′

4 + ω3,

W 2
4 + W ′

4 = W 2
1 − W ′

1 + ω4.

(A.1)

When solving for the unknowns W ′
1,W

′
2,W

′
3 and W ′

4 from these four equations, it can be
easily shown that the determinant of such a linear system vanishes identically, resulting in an
undetermined case. Such behaviour prevails for any CSIPs with even periods greater than 2.
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To overcome this problem, we first obtain a constraint equation from (A.1) as suggested in
[25],

W 2
1 − W 2

2 + W 2
3 − W 2

4 = (ω1 − ω2 + ω3 − ω4)

2
. (A.2)

From (A.2), and its derivative,

W1W
′
1 − W2W

′
2 + W3W

′
3 − W4W

′
4 = 0, (A.3)

both W4 and W ′
4 can be expressed as functions of W1,W2 and W3. Putting W4 and W ′

4 into the
first three equations of (A.1), we can rewrite them in a compact matrix form MW′ = C, with

W′ =
⎛
⎝W ′

1

W ′
2

W ′
3

⎞
⎠ , C =

⎛
⎝ W 2

2 − W 2
1 + ω1

W 2
3 − W 2

2 + ω2

W 2
1 − W 2

2 − (ω1 − ω2 − ω3 − ω4)/2

⎞
⎠ (A.4)

and

M =
⎛
⎝ 1 1 0

0 1 1
W1
W4

−W2
W4

W3
W4

+ 1

⎞
⎠ . (A.5)

Therefore, a system of linear ordinary differential equations for W1,W2 and W3 are
obtained explicitly,

W′ = M−1C, (A.6)

which can be solved with standard numerical methods provided that appropriate boundary
condition is given. Unlike the case of odd-period CSIPs, for CSIPs with even periods the
superpotential becomes singular at origin x = 0. In fact, as shown in [25], for period-4 CSIPs
the superpotential assume the following form near the origin:

W1 = (ω1 − ω2 + ω3 − ω4)

2�4

1

x
+

�4(ω1ω4 + ω1ω2 + ω3ω4 − ω3ω2)

4(ω1 + ω3)(ω2 + ω4)
x + · · · , (A.7)

where �4 = ω1 + ω2 + ω3 + ω4. The series expansion of W2,W3 and W4 can be obtained from
cyclic permutation of the ωs. Besides, similar expansions can also be obtained for higher
even-period CSIPs.

Instead of using the origin as the starting point to integrate (A.6), a point x0 near origin is
chosen to initiate the numerical integration scheme. For a sufficiently small x0, accurate values
of the superpotentials there can be evaluated using the leading terms in (A.7). In tandem with
this, equation (A.6) can be solved by numerical integration. Analogously, superpotentials of
other even-period CSIPs can also be constructed.
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